Roles of N-terminal region residues Lys11, Arg13, and Arg24 of antithrombin in heparin recognition and in promotion and stabilization of the heparin-induced conformational change.

نویسندگان

  • Sophia Schedin-Weiss
  • Umesh R Desai
  • Susan C Bock
  • Steven T Olson
  • Ingemar Björk
چکیده

The N-terminal region residues, Lys11, Arg13, and Arg24, of the plasma coagulation inhibitor, antithrombin, have been implicated in binding of the anticoagulant polysaccharide, heparin, from the identification of natural mutants with impaired heparin binding or by the X-ray structure of a complex of the inhibitor with a high-affinity heparin pentasaccharide. Mutations of Lys11 or Arg24 to Ala in this work each reduced the affinity for the pentasaccharide approximately 40-fold, whereas mutation of Arg13 to Ala led to a decrease of only approximately 7-fold. All three substitutions resulted in the loss of one ionic interaction with the pentasaccharide and those of Lys11 or Arg24 also in 3-5-fold losses in affinity of nonionic interactions. Only the mutation of Lys11 affected the initial, weak interaction step of pentasaccharide binding, decreasing the affinity of this step approximately 2-fold. The mutations of Lys11 and Arg13 moderately, 2-7-fold, altered both rate constants of the second, conformational change step, whereas the substitution of Arg24 appreciably, approximately 25-fold, reduced the reverse rate constant of this step. The N-terminal region of antithrombin is thus critical for high-affinity heparin binding, Lys11 and Arg24 being responsible for maintaining appreciable and comparable binding energy, whereas Arg13 is less important. Lys11 is the only one of the three residues that is involved in the initial recognition step, whereas all three residues participate in the conformational change step. Lys11 and Arg13 presumably bind directly to the heparin pentasaccharide by ionic, and in the case of Lys11, also nonionic interactions. However, the role of Arg24 most likely is indirect, to stabilize the heparin-induced P-helix by interacting intramolecularly with Glu113 and Asp117, thereby positioning the crucial Lys114 residue for optimal ionic and nonionic interactions with the pentasaccharide. Together, these findings show that N-terminal residues of antithrombin make markedly different contributions to the energetics and dynamics of binding of the pentasaccharide ligand to the native and activated conformational states of the inhibitor that could not have been predicted from the X-ray structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Function of the NH2-terminal domain of the regulatory light chain on the regulation of smooth muscle myosin.

The role of the NH2-terminal domain of the 20,000-dalton light chain on the regulatory function of smooth muscle myosin was studied by exchanging it in myosin with various mutant forms. The 10 S to 6 S conformational transition as well as the thick filament formation were significantly influenced by the deletion or substitution of the amino acid residues at the NH2-terminal side of the phosphor...

متن کامل

Importance of lysine 125 for heparin binding and activation of antithrombin.

The anticoagulant sulfated polysaccharide, heparin, binds to the plasma coagulation proteinase inhibitor, antithrombin, and activates it by a conformational change that results in a greatly increased rate of inhibition of target proteinases. Lys125 of antithrombin has previously been implicated in this binding by chemical modification and site-directed mutagenesis and by the crystal structure o...

متن کامل

Influence of heparin molecular size on the induction of C-terminal unfolding in β2-microglobulin

Dialysis-related amyloidosis (DRA) is characterized by accumulation of amyloid β2-microglobulin (β2m) in the interstitial matrix. Matrix substances such as heparin have reportedly been strongly implicated in the pathogenesis of dialysis-related amyloidosis. In clinical setting of hemodialysis, two types of heparin, i.e., high and low molecular heparin (H.M.H. and L.M.H.) have been routinely use...

متن کامل

Antithrombin conformation and the catalytic role of heparin. II. Is the heparin-induced conformational change in antithrombin required for rapid inactivation of thrombin?

The role of antithrombin conformation in heparin-catalyzed inhibition of thrombin was investigated using antithrombins modified with the tryptophan reagent dimethyl (2-hydroxy-5-nitrobenzyl) sulfonium bromide (HNB). Affinity fractionation of HNB-labeled antithrombin (0.6-0.7 mol of HNB/mol of protein) on heparin-Sepharose using a linear salt gradient allowed separation of three singly labeled p...

متن کامل

Mechanism of heparin activation of antithrombin. Role of individual residues of the pentasaccharide activating sequence in the recognition of native and activated states of antithrombin.

To determine the role of individual saccharide residues of a specific heparin pentasaccharide, denoted DEFGH, in the allosteric activation of the serpin, antithrombin, we studied the effect of deleting pentasaccharide residues on this activation. Binding, spectroscopic, and kinetic analyses demonstrated that deletion of reducing-end residues G and H or nonreducing-end residue D produced variabl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 43 3  شماره 

صفحات  -

تاریخ انتشار 2004